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Abstract

During the inference of deep neural networks, adversarial at-
tacks subtly manipulate feature maps, introducing ‘noise’ that
disrupts the process and undermines the model’s robustness.
To address this issue, we observe that low-frequency com-
ponents in adversarially perturbed feature maps encapsulate
more essential information compared to their high-frequency
counterparts. Therefore, we propose a novel feature denoising
strategy that leverages Graph Convolutional Networks (GCNs)
and low-pass filters to address this issue. Different from tra-
ditional denoising techniques, our method can identify and
exploit correlations within and among the feature maps. The
discerned similarities are harnessed to reconstruct the graph,
which is then utilized for feature enhancement in a denois-
ing block based on a Graph Convolutional Network (GCN).
Our approach is compatible with various neural network ar-
chitectures, thereby offering a versatile solution to combat
adversarial noise in feature maps. Experimental results on the
CIFAR-10 dataset validate that our method can improve the
robustness against different adversarial attacks.

Introduction
Deep neural networks have significantly improved the per-
formance of computer vision tasks, notably image classifi-
cation and object detection [11, 32]. This advancement has
unlocked a multitude of applications in various industries.
Despite their effectiveness, the reliability of such models is
frequently compromised by adversarial attacks, such as the
Fast Gradient Sign Method (FGSM) [8], Projected Gradient
Descent (PGD) [16], and Autoattack [3]. These techniques
subtly perturb the input data, thereby introducing significant
”noise” into the neural networks’ feature maps [31, 26]. Al-
though these changes are generally imperceptible to humans,
they can significantly disrupt the model’s inference process,
posing a substantial challenge to its robustness.

Recently, various strategies, such as adversarial train-
ing [1, 19, 12] and model correction [7, 41], have been
proposed to enhance model resilience against adversarial
attacks. However, existing methods primarily focus on per-
turbations in input data, largely neglecting the model’s inter-
nal features. The network’s inference process significantly
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transforms these internal features when under attack. To ex-
ploit the influence of internal feature correlation, we leverage
the Fourier transform to reconstruct and filter feature maps
during the compromised inference process. Our experimen-
tal results show that high-frequency components within the
feature maps are detrimental to performance, indicating the
presence of noise and redundant information. In contrast,
low-frequency components preserve beneficial information,
enhancing the model’s robustness and performance. This
insight motivates us to perform the denoising at the feature-
level, removing high-frequency noise and redundant data,
thereby improving the model’s robustness and generalization
capabilities.

Although the filtering of high-frequency features from
feature maps can reduce redundant information and noise,
this method often overlooks the inherent spatial relation-
ships within feature maps. In Convolutional Neural Networks
(CNNs), the practice of sharing convolutional kernels fre-
quently leads to different feature maps extracting analogous
features from similar positions and orientations [39]. This
phenomenon is particularly evident in deep CNNs, where the
spatial relationships between feature maps can offer critical
insights into their similarities [24, 34].

To leverage these insights, we introduce a novel strategy
that utilizes the similarities between feature maps to construct
a graph representing their relationships and interactions. We
employ a similarity metric to discern correlations among fea-
ture maps, establishing the basis of our graph structure. Subse-
quently, we perform graph convolution operations possessing
low-pass filtering characteristics to denoise the features. This
approach signifies a unique method of incorporating feature
information and understanding correlations between feature
maps during neural network inference, a perspective often
neglected by prior methods. Our initial results demonstrate
our model’s heightened resilience against various adversarial
attacks. Applicable to different CNN-based architectures, our
method offers a potent and flexible solution for enhancing
model robustness against adversarial noise in feature maps.

To our knowledge, this paper represents a pioneering ef-
fort in exploiting the correlations between feature maps to
integrate Graph Neural Networks (GNNs) into visual tasks.
This strategy provides a unique perspective and an efficient
countermeasure against adversarial attacks, which we call
’Harmonizing Feature Maps’. Experimental results on the



CIFAR-10 dataset with different CNN architectures validate
the effectiveness of our proposed methods, which can im-
prove the robustness of CNNs under different type of attacks.

To sum up, the main contributions of this study are as
follow:

• By reconstructing the feature maps with different fre-
quency components through Fourier transform, we iden-
tify that the low-frequency components plays a critical
role for the accuracy of CNN models.

• We propose a graph convolutional-based denoising
method for improving the robustness, which jointly con-
sider the inter feature map correlations and low-pass fil-
tering property of GCN.

Related works
Adversarial Attacks and Defense
Adversarial attacks [9] pose a substantial threat in the field of
computer vision, with the ability to mislead state-of-the-art
Convolutional Neural Networks (CNNs) by adding human-
imperceptible perturbations. Recently, several attack strate-
gies have been proposed to further improve the disruptive
ability of adversarial samples, such as the Fast Gradient Sign
Method (FGSM), Projected Gradient Descent (PGD), and
AutoAttack (AA) [8, 16, 3]. On the other hand, to deal with
the influence of adversarial attacks, various defense strate-
gies have been proposed to improve the robustness of CNN
models [37, 35]. The adversarial training and architectural
modifications are two representative defense strategies.

Adversarial training mainly aimed at enhancing the
model’s resilience by integrating adversarial examples into
the training data, and has seen several significant advance-
ments. For instance, GradAlign [1] is a regularization tech-
nique that maximizes gradient alignment within the pertur-
bation set to prevent severe overfitting, thus improving the
efficacy of FGSM solutions. Furthermore, the “learnable at-
tack strategy” has been introduced in [12], which automates
the generation of attack strategies to boost model robustness.
Despite these advancements, adversarial training is computa-
tionally intensive and may fail to generalize to unseen attacks
due to the model’s inherent bias towards the adversarial ex-
amples used during training.

Architectural modifications constitute another defense
strategy. Defense-GAN [22] harnesses the expressive power
of generative models to establish a defense mechanism
against adversarial attacks. Capsule networks, proposed by
Sabour et al. [17], exhibit increased resilience to adversarial
attacks by taking into account the hierarchical relationships
between simple and complex objects. Despite their poten-
tial, such architectural modifications may introduce added
complexity, possibly influencing the model’s performance on
clean data by overemphasizing adversarial noise at the cost
of recognizing unperturbed inputs.

Recent studies have integrated Graph Neural Networks
(GNNs) into CNN architectures for image denoising [25, 15,
6]. These methods effectively leverage both local and non-
local similarities within image data, offering innovative solu-
tions in areas such as high-resolution image denoising and

evolutionary neural architecture search. Despite their contri-
butions, these methods often neglect the relationship among
different feature maps and lack a feature-centric justification
for the feasibility of GNNs. Therefore, their applicability
may be limited by the quality of graph construction and task
specificity.

Although existing defense methods provide promising so-
lutions, they still insufficient to deal with various adversarial
attacks. The pursuit of comprehensive, efficient, and scal-
able defenses against these sophisticated attacks remains a
thriving area of research.

Graph Neural Networks
Graph Neural Networks (GNNs) have proven to be a power-
ful tool in a wide range of applications due to their capability
to process and model relational data. The inherent structure
of GNNs facilitates the capture and leverage of relationships
between different nodes, rendering them effective in differ-
ent fields. For example, in social network analysis, GNNs
can effectively detect and neutralize malicious nodes and
edges [36, 27]. Similarly, in natural language processing,
GNNs are used to eliminate adversarial noise from text data,
thereby increasing the models’ resistance to attacks [28, 33].

The low-pass filtering characteristics of GNNs make them
highly effective against adversarial attacks, as highlighted in
previous studies [13, 29]. These properties enable GNNs to
preserve essential signal features while filtering out high-
frequency adversarial noise, as previously demonstrated
by [20, 21]. This feature proves particularly useful when
dealing with adversarial perturbations that typically exploit
high-frequency data components.

Considering the inherent vulnerabilities of Convolutional
Neural Networks (CNNs) to adversarial attacks, this paper
suggests employing the denoising capabilities of Graph Neu-
ral Networks (GNNs) to counter adversarial perturbations in
the feature maps of CNN-based models. Given their success-
ful application in enhancing model robustness across various
domains [5, 4, 43], we hypothesize that integrating GNNs
into CNN architectures, with their low-pass filtering proper-
ties and the ability to discern benign from malicious connec-
tions, can substantially improve model resilience against ad-
versarial attacks. Consequently, our work aims to harness the
potential of GNN-based denoising techniques to strengthen
the robustness of CNN-based models by effectively mitigat-
ing adversarial noise in their feature maps.

New Insights into Feature Maps: Frequency
Analysis

In this section, we investigate the frequency characteristics of
feature maps and discuss their utilization for feature denois-
ing. Specifically, we concentrate on the frequency analysis of
feature maps and examine the impact of various frequencies
on downstream tasks, such as image feature extraction and
classification.

Reconstructing Signals from Fourier Coefficients
First, we evaluate the effects of various frequency features on
the performance of Convolutional Neural Networks (CNNs),



utilizing the Fast Fourier Transform (FFT) and its inverse
(IFFT). Based on the FFT and IFFT, we can convert signals
between the time and frequency domains, therefore iden-
tifying critical frequency components contributing to the
network’s output [42].

Signal filtering in the frequency domain is pivotal for var-
ious image processing tasks. By removing extraneous fre-
quency components, including adversarial perturbations, we
can enhance the security and robustness of the model. Pre-
vious researches [40, 18] have shown that low-frequency
features contain substantial structural and regional informa-
tion, while high-frequency features capture intricate details
and boundaries. Consequently, we investigate the effects of
different frequency features on CNN performance, aiming to
enhance model robustness by identifying frequency compo-
nents that preserve valuable information during adversarial
attacks.

Given the feature X ∈ RH×W×C from a convolutional
layer, we first convert the feature map of each channel ci
into one-dimensional feature vector xi ∈ RH×W . Then, we
employ FFT on each flattened feature vector xi to obtain a
frequency spectrum for each feature map. This step can be
denoted as:

fi = FFT(xi). (1)

Next, we apply a low-pass filter on the frequency spectrum,
preserving only the smallest p frequency components. We
can obtain a new a frequency spectrum, f

′

i :

f
′

i,k =

{
fi,k, if k ∈ Ip
0, otherwise

(2)

Here, Ip is the set of indices of the frequency components,
corresponding to the smallest p frequency components in the
FFT results.

Subsequently, we apply the IFFT to the low-pass filtered
coefficient sequence f

′

i to reconstruct the input feature map.
The output sequence, x

′

i, is a real-valued feature vector re-
constructed from the p smallest frequency components of the
input feature vector:

x
′

i = IFFT(f
′

i ). (3)

Finally, after computing the reconstructed feature vec-
tor for each channel ci, we then reshape the denoised fea-
ture vector back to its original dimensions, represented as
X′ ∈ RH×W×C . Subsequently, we can further forward the
denoised feature maps into the following layers of the CNN
to compute a new output after denoising.

Evaluating the Impact of Frequency Components
on Classification Performance
In this section, we assess the influence of varying frequency
components of the feature maps on the classification perfor-
mance. Specifically, we use the first convolutional layer in the
Wide Residual Network (WRN32-10) architecture trained
on the CIFAR-10 dataset. The feature from the first convo-
lutional layer of WRN32-10 contains 16 feature channels
with a size of 32× 32. We subsequently implement the FFT
and IFFT using the Discrete Fourier Transform (DFT) and

Figure 1: Impact of frequency components on classification
accuracy.

Inverse Discrete Fourier Transform (IDFT) to reconstruct the
feature maps with varying frequency components.

Figure 1 illustrates the classification performance of the
WRN32-10 in image classification tasks under different de-
grees of FGSM attacks. As shown in Figure 1, we can find
that preserving approximately the first 40% of low-frequency
signals enhances classification performance. In contrast, re-
taining high-frequency signals has a negative impact on the
accuracy, especially under stronger attacks. This evidence
suggests that selective filtering of feature maps reduces the
amount of high-frequency noise and retain beneficial low-
frequency components, thereby improving the robustness of
CNN models.

Leveraging Inter-Feature Map Correlations for
Graph-Based Feature Denoising

Based on the above analysis, we present a novel graph-based
denoising method for improving the robustness of CNN mod-
els. Our method mainly consists of two parts. Firstly, we
construct a graph to compute the inter-feature correlations
between different feature channels. Besides, we leverage
Graph Convolutional Neural Networks (GCNs) as a noise
filter, which can effectively retain the key structural informa-
tion from the input features. Compared with the conventional
denoising methods, our method leverages the correlations
among feature maps which have been overlooked by other
methods. Additionally, our method exploits the inherent low-
pass filtering properties of GCNs to mitigate high-frequency
noise.

Constructing Inter-Feature Map Correlations
Recent studies [39, 10] have revealed that there are strong
inter-feature map correlations within Convolutional Neural
Networks (CNNs) since their features share local structures
across different local paths in the spatial domain. However,
these correlations are often overlooked by existing denoising
methods. To address this issue, we introduce a graph-based



denoising approach that explicitly leverages inter-feature map
information.

Given the feature X , we first apply the global average pool-
ing (GAP) on each feature channel {x1,x2, . . . ,xn}. Then,
we have the mean-pooled feature vectors {x̄1, x̄2, . . . , x̄n}.
This step serves to reduce the spatial dimensions of the fea-
ture maps while preserving their depth, which is beneficial
for the subsequent steps of our approach. Next, we construct
a similarity matrix S based on their Euclidean distance:

Si,j = exp(−∥x̄i − x̄j∥2

σ2
), (4)

where Si,j represents the similarity score between two feature
maps x̄i and x̄j , and σ is a parameter that controls the decay
rate of the similarity with the distance. To ensure that feature
maps are not compared with themselves, we set the diagonal
entries of S to negative infinity, i.e., Si,i = −∞.

To exploit the inter-feature map correlations, we redefine
the structure of our feature graph G = (V,E), where V cor-
responds to the feature maps, and E contains edges between
nodes. Specifically, for each feature map x̄i, we consider it
as a node in the graph. We then use the similarity matrix S to
determine the edges in E.

In detail, for each node corresponding to x̄i, we examine
the i-th row of S, which contains the similarity scores be-
tween x̄i and all other feature maps. We then choose the top
k nodes with the highest similarity scores and connect x̄i to
these nodes, creating an edge in E. By doing so, we recon-
struct G to better reflect the inter-feature map correlations.

With the graph G and the flattened feature map vectors
fi = vec(xi) for i = 1, 2, ..., n, we can represent the graph
signal matrix F as:

F = [f1, f2, ..., fn]
⊤, (5)

where each fi corresponds to the flattened feature map of
node i.

Graph Convolution as a Low-Pass Filter
Graph Convolutional Networks (GCNs) can be considered
as low-pass filters for graph signals. They mitigate high-
frequency components linked to local structures while en-
hancing low-frequency components indicative of global prop-
erties [30, 2]. To better illuminate this concept, we provide a
simplified representation.

1. Transformation of Input Signal: The primary goal of
GCNs is to convert an input signal X into an output signal y
utilizing the normalized graph Laplacian L:

y = hθ(L)X, (6)

This equation underscores that a GCN fundamentally acts as
a graph signal filter.

2. Filtering in the Fourier Domain: This transformation,
when represented in the Fourier domain, takes the form:

y = Uhθ(L̂)X̂, (7)

where U contains orthogonal eigenvectors, X̂ is the matrix of
Fourier coefficients, and L̂ is a matrix containing eigenvalues
of L.

3. Low-Pass Filtering using Chebyshev Polynomial: We
implement this low-pass filter using a Chebyshev polynomial
approximation. This approximation is simplified by truncat-
ing the Chebyshev polynomial to order K − 1:

hθ(λ) =

K−1∑
k=0

θkTk

(
2L

λmax
− I

)
. (8)

This equation demonstrates how to filter out high-frequency
components by adjusting the ratio of eigenvalue λ to the cut-
off frequency λc. The term ( 2L

λmax
−I) is crucial as it ensures

the values of the normalized Laplacian’s eigenvalues, which
are the arguments of the Chebyshev polynomial, fall within
its defined range of [−1, 1]. The Laplacian L of a graph, after
normalization, has eigenvalues in the range [0, 2]. By scaling
these eigenvalues with 2L

λmax
and subtracting the identity

matrix I , we ensure that the values are within the necessary
range for proper calculation of the Chebyshev polynomial.
By adjusting these coefficients, the GCN effectively filters
out high-frequency components.

Hence, by functioning as low-pass filters, GCNs effectively
dampen the high-frequency components (i.e., larger λ values)
more than the low-frequency ones (i.e., smaller λ values).

Designing Graph Convolution Blocks for Feature
Denoising
In the previous section, we have analyzed the critical role
played by low-frequency components in the reliable extrac-
tion and classification of image features. Additionally, Graph
Convolutional Networks (GCNs) can effectively perform low-
pass filtering for graph signals. As a result, we propose the
use of a GCN-based denoising block to reduce noise within
feature maps.

Our goal is to increase the robustness and resilience
of CNNs against adversarial attacks by preserving low-
frequency components and attenuating high-frequency com-
ponents in feature maps, thereby improving subsequent image
processing tasks. By transforming CNN feature maps into
graph signals and applying GCN-based low-pass filtering, we
can maintain the global image features and decrease redun-
dancy during processing more effectively. Consequently, our
approach encourages more efficient image feature extraction
and classification by retaining essential information in the
feature maps while reducing noise interference. The model
architecture is depicted in Fig. 2.

Our proposed denoising block leverages the low-pass fil-
tering property of GCNs to process the input flattened feature
maps F (as defined in Eq. 5) and the graph G = (V,E),
constructed using inter-feature map information (Section ).
The GCN convolution operation, inclusive of residual con-
nections, is defined as:

F ′ = σ(D̃− 1
2 ÃD̃− 1

2XW ) + F (9)

Here, Ã denotes the adjacency matrix of the graph G with
self-connections, D̃ is the corresponding diagonal degree
matrix, F is the input feature, and W is the weight matrix.
After applying the GCN convolution to the input graph signal
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Figure 2: Illustration of the proposed GCN-based denoising block.

matrix, we reshape the output to original dimension to get
the denoised feature maps.

Our proposed GCN-based denoising block can be seam-
lessly integrated into existing CNN architectures and applied
to multiple convolutional layers within a CNN.

Experiments
Experimental Setting and Implementation Details: We as-
sess the effectiveness of our proposed GCN-based denoising
block by analyzing the performance of the Wide Residual Net-
work 32-10 (WRN32-10) [38] on the CIFAR-10 dataset [14].
We use the CIFAR-10 dataset in this evaluation, which con-
tains 50,000 training images and 10,000 testing images, each
with a size of 32× 32 pixels and 3 color channels (RGB).

Our GCN-based denoising block is integrated into the
WRN32-10 architecture after several group convolutions, and
we evaluate its performance under both regular and adversar-
ial training methods. We perform adversarial attacks using
several different methods, such as FGSM, PGD-20, PGD-
100, and Auto-Attack, which consist of [′apgd−ce′,′ apgd−
dlr′,′ fab− t′,′ square′]. To accelerate the adversarial train-
ing process, we employed the “free” adversarial training
method [23] with m = 8. And adversarial training parame-
ters were adopted from the Free-8 model as detailed in [23].
This method concurrently updates model parameters and gen-
erates adversarial examples during forward and backward
passes, which helps to overcome the potential computational
load of our GCN-based denoising block. Besides, adversarial
perturbations are constrained by the L∞ norm with ϵ = 8.

We use the SGD optimizer for optimization with a mo-
mentum of 0.9 and a weight decay of 0.0002. We set the
initial learning rate to 0.1 and reduce it by 1/10 at the 100th
and 150th epochs. The whole training epochs is 200, and the
batch size is 128. To reconstruct the graph for the GCN-based

denoising block, we restructure the graph underlying the fea-
tures by selecting the top-5 most similar feature maps for
each node. Our experiments were conducted on 4 NVIDIA
RTX A4000 GPUs.

Enhancing Model Robustness via GCN-based
Denoising Block
In this section, we present the evaluation of integrating the
proposed GCN-based denoising into different positions of
the WRN32-10 model. The results of regular training and
adversarial training are reported in Table 1 and Table 2, re-
spectively.

Our results, as demonstrated in Table 1, show that the
inclusion of denoising blocks in the models can markedly
improve their robustness against adversarial attacks, espe-
cially for PGD attacks. For instance, when denoising blocks
are integrated into both the first and second convolutional
layers, the accuracy of the model under the PGD-20 attack
increases to 27.32% from 16.72% in the baseline model. This
indicates a significant improvement in the model’s resilience.
Furthermore, the robustness of the model exhibited a direct
correlation with the number of denoising blocks incorporated.
For instance, when denoising blocks were included at all
three convolutional layers, the accuracy under the PGD-20
attack increased even further to 28.19%.

On the other hand, as seen in Table 2, the introduction of
denoising blocks did not yield a significant improvement in
the performance of models under Auto Attack during adver-
sarial training. This could be attributed to the optimization
challenges presented by the inclusion of denoising blocks.

Overall, our results, as shown in Tables 1 and 2, confirm
that the integration of the proposed GCN-based denoising
block can significantly enhance the model’s defense against
adversarial attacks. While the improvement is particularly
noticeable with PGD attacks and when denoising blocks are



Table 1: Robustness (accuracy(%)) comparison of WRN32-10 models with and without denoising blocks on CIFAR-10. Results
with higher accuracy are bold.

Denoising Block Position Natural Accuracy under White-box Attack (ϵ = 8)

Conv.1 Conv.2 Conv.3 FGSM PGD-20 PGD-100 AA

95.88 53.25 16.72 16.61 13.73

✓ 95.76 55.84 23.87 23.76 24.77
✓ 95.85 54.80 18.49 18.61 18.21

✓ 96.03 53.55 17.21 16.91 16.89
✓ ✓ 95.91 59.64 27.32 27.04 29.24
✓ ✓ ✓ 95.80 58.84 28.19 27.95 30.19

Table 2: Comparison of WRN32-10 models on CIFAR-10: Accuracy (%) under ”free” adversarial training. Results with higher
accuracy are bold.

Denoising Block Position Natural Accuracy under White-box Attack (ϵ = 8)

Conv.1 Conv.2 Conv.3 FGSM PGD-20 PGD-100 AA

80.21 75.70 46.05 45.98 26.98

✓ 81.01 77.38 47.87 47.85 30.05
✓ 80.72 77.15 47.87 47.85 29.75

✓ 80.35 76.45 47.09 46.92 27.15
✓ ✓ 80.32 76.16 48.33 47.01 31.49
✓ ✓ ✓ 80.09 76.74 48.88 48.70 32.91

incorporated into the earlier convolutional layers, further
research is warranted to address the optimization challenges
encountered during Auto Attacks.

Scalability of the Proposed Approach to ResNet-18
Architecture
To further evaluate the scalability of the proposed GCN-based
denoising block, we incorporated it into the ResNet-18 archi-
tecture. From Table 3, we can have following observations.
(1) Adding the denosining block into the normal trained
model can improve the robustness of ResNet-18 against var-
ious adversarial attacks. For example, the accuracy will in-
crease from 16.29% to 20.67% under the PGD-20 attack.
(2) The denosining block in also effective in the adversarial
trained ResNet-18. For instance, the accuracy of the model
under the PGD-20 attack increased from 43.82% to 45.40%
when the denoising block was included.

These results demonstrate the versatility and scalability
of our proposed GCN-based denoising block as a defense
mechanism against adversarial attacks. The block has demon-
strated effectiveness in improving model robustness across
different deep learning architectures, such as WRN32-10 and
ResNet-18, and under varying adversarial attack conditions.

Effectiveness of the Proposed GCN-based Denoising
Block under Various ϵ Attacks
In the section, we evaluate the robustness of our proposed
GCN-based denoising block under different values of the
adversarial attack magnitude ϵ (4, 8, 12, and 16). We add a
single GCN block after the first convolutional layer in the

(a) PGD-20 (b) PGD-100

Figure 3: Comparative analysis of WRN32-10’s robustness:
with and without the GNN-based denoising block under vary-
ing ϵ attacks

WRN32-10 model and test the performance under the PGD-
20 and PGD-100 attacks. From the result in Figure 3, we
can find that adding the denoising block can consistently
improved the model’s performance. Notably, the accuracy
gains ranged between 2.53% and 8.17% under different attack
magnitudes compared to the baseline model.

Concurrently, we observe that the model’s accuracy de-
creased as the ϵ value increased. For example, under PGD-20
and PGD-100 attacks, model accuracy dropped roughly by
30% when the ϵ value escalated from 4 to 16. This obser-
vation underscores the susceptibility of the model to more
intensive white-box attacks, further emphasizing the neces-
sity for robust and effective defense strategies against such
attacks.



Table 3: Comparison of Robustness (accuracy(%)) for ResNet-18 model with and without our GCN-based denoising block and
adversarial training on CIFAR-10. The denoising block is added after the first convolutional layer. Higher accuracy results are
highlighted in bold.

Model Information Natural Accuracy under White-box Attack (ϵ = 8)

Denoising Block Adv. Training FGSM PGD-20 PGD-100 AA

95.03 50.44 16.29 16.06 14.10
✓ 76.00 71.32 43.82 43.80 22.43

✓ 94.93 51.69 20.67 20.47 21.54
✓ ✓ 76.46 72.97 45.40 45.35 24.35

Conclusion and Limitations
In this study, we aim to integrate Graph Neural Networks
(GNNs) and Convolutional Neural Networks (CNNs) through
the introduction of a novel GCN-based denoising block. This
unique design significantly enhances the robustness of CNNs
against adversarial attacks and highlights the untapped poten-
tial of leveraging GCNs for image processing tasks.

Despite these advancements, our research has certain limi-
tations, primarily the added computational complexity result-
ing from the GCN-based denoising block. It may increase the
resource demand, which could potentially hinder the model’s
scalability and efficiency, especially in resource-constrained
settings. Moreover, our study primarily focused on the ap-
plication of Graph Convolutional Networks. Future research
could explore other types of GNNs, such as Graph Atten-
tion Networks or Graph Isomorphism Networks, for potential
integration and their possible impacts on adversarial robust-
ness.Despite these challenges, our study provides a promising
foundation for future research, aimed at fortifying the synergy
between GCNs and CNNs, and bolstering CNN resilience
against adversarial attacks.
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[43] Zügner, D.; and Günnemann, S. 2019. Certifiable ro-
bustness and robust training for graph convolutional
networks. In SIGKDD, 246–256.


